Process Database & Knowledge Repository

Section 84
Comprehensive database of cutting parameters, material properties, and process knowledge

Process Database & Knowledge Repository

This comprehensive database contains validated cutting parameters, material properties, and process knowledge accumulated from industry experience and research. Use this repository to find proven parameters and build your own process knowledge.

🗄️ Database Structure

Material Properties Database

Comprehensive thermal, optical, and mechanical properties for laser cutting materials.

Parameter Database

Validated cutting parameters organized by material, thickness, and quality requirements.

Process Knowledge Base

Best practices, troubleshooting guides, and optimization techniques.

Quality Database

Quality standards, measurement methods, and acceptance criteria.

📊 Interactive Parameter Database

Search and filter cutting parameters by material, thickness, and application:

Smart Parameter Recommendation System
1
Material
2
Specifications
3
Requirements
4
Results
Step 1: Select Material
Step 2: Part Specifications
Step 3: Quality & Production Requirements
Recommended Parameters
Laser Settings
Power:-
Speed:-
Focus:-
Frequency:-
Gas Settings
Gas Type:-
Pressure:-
Flow Rate:-
Nozzle:-
Performance Predictions
-
Cutting Time
-
Quality Grade
-
Cost per Part
-
Efficiency
Optimization Tips

🔍 Advanced Search Interface

Search by Material Type

  • Metals - Ferrous and non-ferrous alloys
  • Plastics - Engineering and commodity plastics
  • Composites - Fiber-reinforced materials
  • Ceramics - Technical ceramics and glass

Search by Property Range

  • Thermal Conductivity - 0.1 to 400 W/m·K
  • Melting Point - 100°C to 3000°C
  • Density - 0.5 to 20 g/cm³
  • Laser Absorptivity - 5% to 95%

Parameter Search Filters

By Application

  • Aerospace - High precision, certified materials
  • Automotive - High volume, cost-effective
  • Medical - Biocompatible, sterile processing
  • Electronics - Precision, minimal heat input
  • General Manufacturing - Standard applications

By Quality Grade

  • Grade 1 - Highest precision (±0.05mm)
  • Grade 2 - Precision manufacturing (±0.1mm)
  • Grade 3 - General manufacturing (±0.2mm)
  • Grade 4 - Construction grade (±0.5mm)

📈 Material Properties Database

Thermal Properties

Material Thermal Conductivity (W/m·K) Specific Heat (J/kg·K) Melting Point (°C) Thermal Diffusivity (mm²/s)
Carbon Steel AISI 1020 50 486 1500 13.1
Stainless Steel 304 16.2 500 1400 4.1
Aluminum 6061 167 896 660 69.0
Titanium Grade 2 17 523 1668 7.2
Copper C101 401 385 1085 117.0
Acrylic (PMMA) 0.19 1420 160 0.11

Optical Properties

Material Absorptivity at 1μm (%) Reflectivity at 1μm (%) Absorptivity at 10.6μm (%) Surface Finish Effect
Carbon Steel 40 60 95 Significant
Stainless Steel 30 70 90 Moderate
Aluminum 10 90 85 Very Significant
Titanium 50 50 95 Moderate
Copper 5 95 80 Extreme
Acrylic 5 5 90 Minimal

Mechanical Properties

Material Tensile Strength (MPa) Yield Strength (MPa) Elongation (%) Hardness (HB)
Carbon Steel AISI 1020 420 350 25 121
Stainless Steel 304 515 205 40 201
Aluminum 6061-T6 310 276 12 95
Titanium Grade 2 345 275 20 215
Copper C101 220 70 45 45

⚙️ Validated Parameter Database

Carbon Steel Parameters (Oxygen Cutting)

AISI 1020 - Fiber Laser (1070nm)

Thickness Power (W) Speed (mm/min) O₂ Pressure (bar) Focus (mm) Quality Grade Edge Roughness (μm)
1mm 1000 4000 0.6 0 2 15
2mm 1200 3000 0.8 -0.5 2 20
3mm 1500 2200 1.0 -1.0 2 25
5mm 2000 1500 1.2 -1.5 2 35
8mm 3000 800 1.5 -2.0 3 50
10mm 4000 500 1.8 -2.5 3 65

Stainless Steel Parameters (Nitrogen Cutting)

304 Grade - Fiber Laser (1070nm)

Thickness Power (W) Speed (mm/min) N₂ Pressure (bar) Focus (mm) Quality Grade Edge Roughness (μm)
1mm 1500 3000 12 0 1 8
2mm 2000 2000 14 -0.5 1 12
3mm 2500 1500 16 -1.0 2 18
5mm 3500 900 18 -1.5 2 25
8mm 5000 400 20 -2.0 2 35
10mm 6000 250 22 -2.5 3 45

Aluminum Parameters (Nitrogen Cutting)

6061-T6 - Fiber Laser (1070nm)

Thickness Power (W) Speed (mm/min) N₂ Pressure (bar) Focus (mm) Quality Grade Edge Roughness (μm)
1mm 2000 4000 15 0 2 12
2mm 2500 3000 16 -0.5 2 15
3mm 3000 2200 18 -1.0 2 20
5mm 4000 1200 20 -1.5 2 28
8mm 6000 600 22 -2.0 3 40
10mm 7500 350 25 -2.5 3 55

🎯 Process Knowledge Base

Optimization Guidelines

Power Optimization

Minimum Power Principle:

  • Start with minimum power for complete cut
  • Increase gradually to improve speed
  • Monitor for quality degradation
  • Balance power with gas pressure

Power Density Considerations:

  • Thin materials: Lower power density
  • Thick materials: Higher power density
  • Reflective materials: Higher power required
  • Heat-sensitive materials: Pulsed mode

Speed Optimization

Maximum Speed Approach:

  • Start with conservative speed
  • Increase while maintaining quality
  • Monitor for incomplete cuts
  • Consider production requirements

Speed Limiting Factors:

  • Material thickness
  • Quality requirements
  • Corner geometry
  • Acceleration limits

Gas Optimization

Gas Selection Criteria:

  • Oxygen: Carbon steel, fast cutting
  • Nitrogen: Stainless steel, aluminum, oxide-free
  • Argon: Titanium, reactive materials
  • Air: Cost-sensitive applications

Pressure Optimization:

  • Start with recommended pressure
  • Adjust based on dross formation
  • Consider gas consumption costs
  • Monitor for blow-out effects

Quality Troubleshooting Database

Edge Quality Issues

Rough Edges:

  • Cause: Incorrect focus position
  • Solution: Recalibrate focus
  • Prevention: Regular focus checks

Excessive Dross:

  • Cause: Speed too slow, pressure too low
  • Solution: Increase speed or pressure
  • Prevention: Parameter optimization

Burn Marks:

  • Cause: Excessive heat input
  • Solution: Increase speed, reduce power
  • Prevention: Heat management

Dimensional Issues

Taper:

  • Cause: Beam alignment, nozzle alignment
  • Solution: Professional alignment
  • Prevention: Regular calibration

Oversize Parts:

  • Cause: Excessive kerf width
  • Solution: Optimize parameters, kerf compensation
  • Prevention: Process validation

📚 Best Practices Repository

Setup Procedures

  1. Material Preparation

    • Surface cleaning
    • Flatness verification
    • Proper fixturing
  2. Equipment Setup

    • Power calibration
    • Focus position setting
    • Gas system verification
  3. Parameter Validation

    • Test cuts on scrap
    • Quality verification
    • Production approval

Quality Control Procedures

  1. First Article Inspection

    • Dimensional verification
    • Edge quality assessment
    • Documentation
  2. In-Process Monitoring

    • Visual inspection
    • Parameter monitoring
    • Statistical control
  3. Final Inspection

    • Complete dimensional check
    • Surface quality verification
    • Documentation

Maintenance Best Practices

  1. Daily Maintenance

    • Visual inspections
    • Cleaning procedures
    • Performance checks
  2. Preventive Maintenance

    • Scheduled replacements
    • Calibration verification
    • System optimization
  3. Predictive Maintenance

    • Performance monitoring
    • Trend analysis
    • Proactive replacement

🔄 Database Updates and Contributions

Regular Updates

  • Weekly: New parameter validations
  • Monthly: Material property updates
  • Quarterly: Process knowledge additions
  • Annually: Comprehensive review

Contribution Guidelines

  • Parameter validation requirements
  • Quality documentation standards
  • Peer review process
  • Attribution and credits

Data Quality Standards

  • Traceability requirements
  • Validation procedures
  • Documentation standards
  • Version control

This database represents accumulated knowledge from industry professionals and research institutions. All parameters should be validated in your specific application before production use.

Last updated: July 5, 2025