Process Database & Knowledge Repository
This comprehensive database contains validated cutting parameters, material properties, and process knowledge accumulated from industry experience and research. Use this repository to find proven parameters and build your own process knowledge.
🗄️ Database Structure
Material Properties Database
Comprehensive thermal, optical, and mechanical properties for laser cutting materials.
Parameter Database
Validated cutting parameters organized by material, thickness, and quality requirements.
Process Knowledge Base
Best practices, troubleshooting guides, and optimization techniques.
Quality Database
Quality standards, measurement methods, and acceptance criteria.
📊 Interactive Parameter Database
Search and filter cutting parameters by material, thickness, and application:
Smart Parameter Recommendation System
Step 1: Select Material
Step 2: Part Specifications
Step 3: Quality & Production Requirements
Recommended Parameters
Laser Settings
| Power: | - |
| Speed: | - |
| Focus: | - |
| Frequency: | - |
Gas Settings
| Gas Type: | - |
| Pressure: | - |
| Flow Rate: | - |
| Nozzle: | - |
Performance Predictions
Optimization Tips
🔍 Advanced Search Interface
Material Property Search
Search by Material Type
- Metals - Ferrous and non-ferrous alloys
- Plastics - Engineering and commodity plastics
- Composites - Fiber-reinforced materials
- Ceramics - Technical ceramics and glass
Search by Property Range
- Thermal Conductivity - 0.1 to 400 W/m·K
- Melting Point - 100°C to 3000°C
- Density - 0.5 to 20 g/cm³
- Laser Absorptivity - 5% to 95%
Parameter Search Filters
By Application
- Aerospace - High precision, certified materials
- Automotive - High volume, cost-effective
- Medical - Biocompatible, sterile processing
- Electronics - Precision, minimal heat input
- General Manufacturing - Standard applications
By Quality Grade
- Grade 1 - Highest precision (±0.05mm)
- Grade 2 - Precision manufacturing (±0.1mm)
- Grade 3 - General manufacturing (±0.2mm)
- Grade 4 - Construction grade (±0.5mm)
📈 Material Properties Database
Thermal Properties
| Material | Thermal Conductivity (W/m·K) | Specific Heat (J/kg·K) | Melting Point (°C) | Thermal Diffusivity (mm²/s) |
|---|---|---|---|---|
| Carbon Steel AISI 1020 | 50 | 486 | 1500 | 13.1 |
| Stainless Steel 304 | 16.2 | 500 | 1400 | 4.1 |
| Aluminum 6061 | 167 | 896 | 660 | 69.0 |
| Titanium Grade 2 | 17 | 523 | 1668 | 7.2 |
| Copper C101 | 401 | 385 | 1085 | 117.0 |
| Acrylic (PMMA) | 0.19 | 1420 | 160 | 0.11 |
Optical Properties
| Material | Absorptivity at 1μm (%) | Reflectivity at 1μm (%) | Absorptivity at 10.6μm (%) | Surface Finish Effect |
|---|---|---|---|---|
| Carbon Steel | 40 | 60 | 95 | Significant |
| Stainless Steel | 30 | 70 | 90 | Moderate |
| Aluminum | 10 | 90 | 85 | Very Significant |
| Titanium | 50 | 50 | 95 | Moderate |
| Copper | 5 | 95 | 80 | Extreme |
| Acrylic | 5 | 5 | 90 | Minimal |
Mechanical Properties
| Material | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Hardness (HB) |
|---|---|---|---|---|
| Carbon Steel AISI 1020 | 420 | 350 | 25 | 121 |
| Stainless Steel 304 | 515 | 205 | 40 | 201 |
| Aluminum 6061-T6 | 310 | 276 | 12 | 95 |
| Titanium Grade 2 | 345 | 275 | 20 | 215 |
| Copper C101 | 220 | 70 | 45 | 45 |
⚙️ Validated Parameter Database
Carbon Steel Parameters (Oxygen Cutting)
AISI 1020 - Fiber Laser (1070nm)
| Thickness | Power (W) | Speed (mm/min) | O₂ Pressure (bar) | Focus (mm) | Quality Grade | Edge Roughness (μm) |
|---|---|---|---|---|---|---|
| 1mm | 1000 | 4000 | 0.6 | 0 | 2 | 15 |
| 2mm | 1200 | 3000 | 0.8 | -0.5 | 2 | 20 |
| 3mm | 1500 | 2200 | 1.0 | -1.0 | 2 | 25 |
| 5mm | 2000 | 1500 | 1.2 | -1.5 | 2 | 35 |
| 8mm | 3000 | 800 | 1.5 | -2.0 | 3 | 50 |
| 10mm | 4000 | 500 | 1.8 | -2.5 | 3 | 65 |
Stainless Steel Parameters (Nitrogen Cutting)
304 Grade - Fiber Laser (1070nm)
| Thickness | Power (W) | Speed (mm/min) | N₂ Pressure (bar) | Focus (mm) | Quality Grade | Edge Roughness (μm) |
|---|---|---|---|---|---|---|
| 1mm | 1500 | 3000 | 12 | 0 | 1 | 8 |
| 2mm | 2000 | 2000 | 14 | -0.5 | 1 | 12 |
| 3mm | 2500 | 1500 | 16 | -1.0 | 2 | 18 |
| 5mm | 3500 | 900 | 18 | -1.5 | 2 | 25 |
| 8mm | 5000 | 400 | 20 | -2.0 | 2 | 35 |
| 10mm | 6000 | 250 | 22 | -2.5 | 3 | 45 |
Aluminum Parameters (Nitrogen Cutting)
6061-T6 - Fiber Laser (1070nm)
| Thickness | Power (W) | Speed (mm/min) | N₂ Pressure (bar) | Focus (mm) | Quality Grade | Edge Roughness (μm) |
|---|---|---|---|---|---|---|
| 1mm | 2000 | 4000 | 15 | 0 | 2 | 12 |
| 2mm | 2500 | 3000 | 16 | -0.5 | 2 | 15 |
| 3mm | 3000 | 2200 | 18 | -1.0 | 2 | 20 |
| 5mm | 4000 | 1200 | 20 | -1.5 | 2 | 28 |
| 8mm | 6000 | 600 | 22 | -2.0 | 3 | 40 |
| 10mm | 7500 | 350 | 25 | -2.5 | 3 | 55 |
🎯 Process Knowledge Base
Optimization Guidelines
Power Optimization
Minimum Power Principle:
- Start with minimum power for complete cut
- Increase gradually to improve speed
- Monitor for quality degradation
- Balance power with gas pressure
Power Density Considerations:
- Thin materials: Lower power density
- Thick materials: Higher power density
- Reflective materials: Higher power required
- Heat-sensitive materials: Pulsed mode
Speed Optimization
Maximum Speed Approach:
- Start with conservative speed
- Increase while maintaining quality
- Monitor for incomplete cuts
- Consider production requirements
Speed Limiting Factors:
- Material thickness
- Quality requirements
- Corner geometry
- Acceleration limits
Gas Optimization
Gas Selection Criteria:
- Oxygen: Carbon steel, fast cutting
- Nitrogen: Stainless steel, aluminum, oxide-free
- Argon: Titanium, reactive materials
- Air: Cost-sensitive applications
Pressure Optimization:
- Start with recommended pressure
- Adjust based on dross formation
- Consider gas consumption costs
- Monitor for blow-out effects
Quality Troubleshooting Database
Edge Quality Issues
Rough Edges:
- Cause: Incorrect focus position
- Solution: Recalibrate focus
- Prevention: Regular focus checks
Excessive Dross:
- Cause: Speed too slow, pressure too low
- Solution: Increase speed or pressure
- Prevention: Parameter optimization
Burn Marks:
- Cause: Excessive heat input
- Solution: Increase speed, reduce power
- Prevention: Heat management
Dimensional Issues
Taper:
- Cause: Beam alignment, nozzle alignment
- Solution: Professional alignment
- Prevention: Regular calibration
Oversize Parts:
- Cause: Excessive kerf width
- Solution: Optimize parameters, kerf compensation
- Prevention: Process validation
📚 Best Practices Repository
Setup Procedures
-
Material Preparation
- Surface cleaning
- Flatness verification
- Proper fixturing
-
Equipment Setup
- Power calibration
- Focus position setting
- Gas system verification
-
Parameter Validation
- Test cuts on scrap
- Quality verification
- Production approval
Quality Control Procedures
-
First Article Inspection
- Dimensional verification
- Edge quality assessment
- Documentation
-
In-Process Monitoring
- Visual inspection
- Parameter monitoring
- Statistical control
-
Final Inspection
- Complete dimensional check
- Surface quality verification
- Documentation
Maintenance Best Practices
-
Daily Maintenance
- Visual inspections
- Cleaning procedures
- Performance checks
-
Preventive Maintenance
- Scheduled replacements
- Calibration verification
- System optimization
-
Predictive Maintenance
- Performance monitoring
- Trend analysis
- Proactive replacement
🔄 Database Updates and Contributions
Regular Updates
- Weekly: New parameter validations
- Monthly: Material property updates
- Quarterly: Process knowledge additions
- Annually: Comprehensive review
Contribution Guidelines
- Parameter validation requirements
- Quality documentation standards
- Peer review process
- Attribution and credits
Data Quality Standards
- Traceability requirements
- Validation procedures
- Documentation standards
- Version control
This database represents accumulated knowledge from industry professionals and research institutions. All parameters should be validated in your specific application before production use.