Advanced Material Database

Section 10
Comprehensive database of material properties for laser cutting optimization

Advanced Material Database

This comprehensive database provides detailed material properties essential for laser cutting parameter optimization and process modeling.

Interactive Material Selection

Find the perfect material for your specific application requirements:

AI-Powered Material Selection Wizard

Step 1 of 5

Application Requirements

Tell us about your laser cutting application to get personalized material recommendations.

Mechanical Properties

Specify the mechanical requirements for your application.

Environmental Conditions

Define the operating environment for your parts.

to

Processing Requirements

Specify your laser cutting and post-processing needs.

to

Material Recommendations

Based on your requirements, here are the recommended materials:

Interactive Material Explorer

Material Property Explorer

Material Properties

2.0 mm

Laser System

2000 W
1.1

Process Requirements

Optimized Parameters

Laser Power
1200 W
75% of max power
🏃
Cutting Speed
800 mm/min
Optimized for quality
💨
Gas Pressure
12 bar
High pressure cut
🎯
Focus Offset
0.0 mm
On surface
Performance Predictions
Estimated Cut Time (1m): 75 seconds
Power Density: 3.8 × 10⁵ W/cm²
Linear Energy: 90 J/mm
Expected Surface Roughness: Ra 6-10 μm
HAZ Width: 0.15 mm
Recommendations
  • Use nitrogen assist gas for clean, oxide-free edges
  • Consider multiple passes for thicker sections
  • Monitor melt pool stability during cutting

Real-Time Process Monitoring

Monitor material-specific cutting processes in real-time:

Material-Specific Process Monitor

Laser Power (%)
0%
Cutting Speed (mm/min)
0
Temperature (°C)
0°C
Laser Status
Assist Gas
Cooling System
Exhaust System
Safety Systems
Quality Control

Process Parameters

0 bar
0.0 mm
1.0 M²
0.0 mm
0.0 m
00:00

System Alerts

12:00:00 System initialized successfully

Material Categories

Metals

Ferrous Alloys

Carbon Steels

\text{Carbon Content: } 0.05\% - 2.0\%
Grade Carbon (%) Thermal Conductivity (W/m·K) Melting Point (°C) Cutting Characteristics
Low Carbon (1010) 0.08-0.13 51 1495 Excellent, minimal hardening
Medium Carbon (1045) 0.43-0.50 49 1470 Good, moderate hardening
High Carbon (1095) 0.90-1.03 46 1450 Challenging, prone to cracking

Stainless Steels

Grade Type Cr (%) Ni (%) Thermal Conductivity (W/m·K) Applications
304 Austenitic 18-20 8-10.5 16.2 General purpose, food industry
316 Austenitic 16-18 10-14 16.3 Marine, chemical processing
430 Ferritic 16-18 - 26.1 Automotive, appliances
410 Martensitic 11.5-13.5 - 24.9 Cutlery, surgical instruments

Non-Ferrous Alloys

Aluminum Alloys

Aluminum Alloy Microstructure

Mouse: Rotate | Wheel: Zoom | Right-click: Pan
Series Primary Alloying Thermal Conductivity (W/m·K) Strength (MPa) Laser Cutting Notes
1xxx Pure Al (99%+) 237 70-175 Excellent cutting, high reflectivity
2xxx Copper 120-190 185-470 Good cutting, age-hardenable
3xxx Manganese 150-190 110-280 Excellent cutting, work-hardenable
5xxx Magnesium 120-140 125-350 Good cutting, non-heat-treatable
6xxx Mg + Si 150-200 125-400 Excellent cutting, heat-treatable
7xxx Zinc 130-160 220-570 Moderate cutting, high strength

Copper Alloys

Thermal Diffusivity Calculation
\text{Thermal Diffusivity: } \alpha = \frac{k}{\rho c_p}
Alloy Composition Thermal Conductivity (W/m·K) Cutting Challenge Solutions
Pure Copper 99.9% Cu 401 Very high reflectivity Surface treatment, high power
Brass (C260) 70% Cu, 30% Zn 120 Moderate reflectivity Standard parameters
Bronze (C510) 95% Cu, 5% Sn 65 Good cutting properties Nitrogen assist
Beryllium Copper 98% Cu, 2% Be 105 Toxic fumes Special ventilation

Titanium Alloys

Titanium Microstructure Technical Illustration
Titanium alloy microstructure showing α and β phases critical for laser cutting behavior.
Grade Composition Phase Structure Thermal Conductivity (W/m·K) Cutting Advantages
Grade 1 99.5% Ti α 17 Excellent ductility
Grade 2 99.2% Ti α 17 Best general purpose
Ti-6Al-4V Ti-6Al-4V α+β 7.2 High strength-to-weight
Ti-6Al-2Sn-4Zr-2Mo Complex α+β 8.1 High temperature service

Non-Metals

Polymers

Thermoplastics

Material Glass Transition (°C) Melting Point (°C) Thermal Conductivity (W/m·K) Laser Cutting Notes
Acrylic (PMMA) 105 160 0.19 Excellent, flame-polished edges
Polycarbonate 147 155 0.20 Good, some discoloration
ABS 105 200-260 0.25 Moderate, toxic fumes
PEEK 143 334 0.25 Excellent, high-performance
Nylon 6 47 220 0.25 Good, hygroscopic effects

Thermosets

Material Decomposition (°C) Thermal Conductivity (W/m·K) Cutting Characteristics
Phenolic 300-400 0.15 Chars, toxic fumes
Epoxy 250-350 0.17 Good cutting, some charring
Polyimide 500+ 0.12 Excellent high-temp performance

Composites

Fiber-Reinforced Plastics

Heat Distribution in Composite Materials

Mouse: Rotate | Wheel: Zoom | Right-click: Pan
Matrix Fiber Fiber Volume (%) Thermal Properties Cutting Challenges
Epoxy Carbon 50-65 Anisotropic Delamination, fiber pullout
Epoxy Glass 45-60 Low conductivity Clean cutting possible
PEEK Carbon 30-50 High temperature Excellent cutting properties
Polyimide Aramid 40-55 Low thermal Fiber fraying

Advanced Property Calculations

Thermal Diffusion Length

Thermal Diffusion Length
l_{th} = \sqrt{4\alpha t}

Where:

  • l_{th}
    = thermal diffusion length
    (\unit{m})
  • \alpha
    = thermal diffusivity
    (\unit{m^2/s})
  • t
    = interaction time
    (\unit{s})

Absorption Coefficient Temperature Dependence

Temperature-Dependent Absorption
A(T) = A_0 \left[1 + \beta(T - T_0)\right]

Where:

  • A(T)
    = absorption at temperature T
  • A_0
    = absorption at reference temperature
  • \beta
    = temperature coefficient
  • T_0
    = reference temperature

Critical Power Density

Critical Power Density for Melting
I_{crit} = \frac{k(T_m - T_0)}{A \cdot \sqrt{\pi \alpha t}}

Where:

  • I_{crit}
    = critical power density
    (\unit{W/cm^2})
  • k
    = thermal conductivity
  • T_m
    = melting temperature
  • T_0
    = ambient temperature
  • A
    = absorption coefficient

Material Selection Guidelines

For High-Speed Cutting

  1. Low thermal conductivity - Minimizes heat spreading
  2. High absorption - Efficient energy coupling
  3. Low melting point - Reduces energy requirements
  4. Good fluidity when molten - Clean melt removal

For High-Quality Edges

  1. Uniform composition - Consistent cutting behavior
  2. Fine grain structure - Smooth surface finish
  3. Low thermal expansion - Minimal distortion
  4. Stable phases - No phase transformations

For Thick Section Cutting

  1. Moderate thermal conductivity - Balanced heat distribution
  2. High oxidation resistance - For oxygen-assisted cutting
  3. Good mechanical properties - Structural integrity
  4. Low work hardening - Consistent cutting through thickness

Specialized Materials

Superalloys

Alloy Base Service Temp (°C) Thermal Conductivity (W/m·K) Cutting Notes
Inconel 718 Ni 650 11.2 Work hardening, slow speeds
Hastelloy X Ni 1200 9.1 Excellent high-temp properties
Waspaloy Ni 815 10.5 Precipitation hardening
René 41 Ni 980 12.8 Turbine blade applications

Refractory Metals

Metal Melting Point (°C) Thermal Conductivity (W/m·K) Density (g/cm³) Applications
Tungsten 3422 173 19.3 Electronics, aerospace
Molybdenum 2623 138 10.2 High-temperature furnaces
Tantalum 3017 57 16.7 Chemical processing
Rhenium 3186 48 21.0 Jet engine components

Quality Prediction Models

Surface Roughness Estimation

Surface Roughness Model
R_a = C_1 \left(\frac{v}{P}\right)^{0.3} t^{0.4} k^{0.2}

Heat-Affected Zone Width

HAZ Width Prediction
HAZ = C_2 \sqrt{\frac{P \cdot k}{v \cdot \rho \cdot c_p}}

Cutting Speed Optimization

Optimal Cutting Speed
v_{opt} = \frac{C_3 \cdot P \cdot A}{t^{1.5} \cdot \sqrt{k \cdot \rho \cdot c_p}}

This database is continuously updated with the latest material property data and cutting parameter research.

Last updated: July 5, 2025