Advanced Material Database
This comprehensive database provides detailed material properties essential for laser cutting parameter optimization and process modeling.
Interactive Material Selection
Find the perfect material for your specific application requirements:
AI-Powered Material Selection Wizard
Application Requirements
Tell us about your laser cutting application to get personalized material recommendations.
Mechanical Properties
Specify the mechanical requirements for your application.
Environmental Conditions
Define the operating environment for your parts.
Processing Requirements
Specify your laser cutting and post-processing needs.
Material Recommendations
Based on your requirements, here are the recommended materials:
Interactive Material Explorer
Material Property Explorer
Material Properties
Laser System
Process Requirements
Optimized Parameters
Performance Predictions
Recommendations
- Use nitrogen assist gas for clean, oxide-free edges
- Consider multiple passes for thicker sections
- Monitor melt pool stability during cutting
Real-Time Process Monitoring
Monitor material-specific cutting processes in real-time:
Material-Specific Process Monitor
Process Parameters
System Alerts
Material Categories
Metals
Ferrous Alloys
Carbon Steels
\text{Carbon Content: } 0.05\% - 2.0\%
| Grade | Carbon (%) | Thermal Conductivity (W/m·K) | Melting Point (°C) | Cutting Characteristics |
|---|---|---|---|---|
| Low Carbon (1010) | 0.08-0.13 | 51 | 1495 | Excellent, minimal hardening |
| Medium Carbon (1045) | 0.43-0.50 | 49 | 1470 | Good, moderate hardening |
| High Carbon (1095) | 0.90-1.03 | 46 | 1450 | Challenging, prone to cracking |
Stainless Steels
| Grade | Type | Cr (%) | Ni (%) | Thermal Conductivity (W/m·K) | Applications |
|---|---|---|---|---|---|
| 304 | Austenitic | 18-20 | 8-10.5 | 16.2 | General purpose, food industry |
| 316 | Austenitic | 16-18 | 10-14 | 16.3 | Marine, chemical processing |
| 430 | Ferritic | 16-18 | - | 26.1 | Automotive, appliances |
| 410 | Martensitic | 11.5-13.5 | - | 24.9 | Cutlery, surgical instruments |
Non-Ferrous Alloys
Aluminum Alloys
Aluminum Alloy Microstructure
| Series | Primary Alloying | Thermal Conductivity (W/m·K) | Strength (MPa) | Laser Cutting Notes |
|---|---|---|---|---|
| 1xxx | Pure Al (99%+) | 237 | 70-175 | Excellent cutting, high reflectivity |
| 2xxx | Copper | 120-190 | 185-470 | Good cutting, age-hardenable |
| 3xxx | Manganese | 150-190 | 110-280 | Excellent cutting, work-hardenable |
| 5xxx | Magnesium | 120-140 | 125-350 | Good cutting, non-heat-treatable |
| 6xxx | Mg + Si | 150-200 | 125-400 | Excellent cutting, heat-treatable |
| 7xxx | Zinc | 130-160 | 220-570 | Moderate cutting, high strength |
Copper Alloys
\text{Thermal Diffusivity: } \alpha = \frac{k}{\rho c_p}
| Alloy | Composition | Thermal Conductivity (W/m·K) | Cutting Challenge | Solutions |
|---|---|---|---|---|
| Pure Copper | 99.9% Cu | 401 | Very high reflectivity | Surface treatment, high power |
| Brass (C260) | 70% Cu, 30% Zn | 120 | Moderate reflectivity | Standard parameters |
| Bronze (C510) | 95% Cu, 5% Sn | 65 | Good cutting properties | Nitrogen assist |
| Beryllium Copper | 98% Cu, 2% Be | 105 | Toxic fumes | Special ventilation |
Titanium Alloys
| Grade | Composition | Phase Structure | Thermal Conductivity (W/m·K) | Cutting Advantages |
|---|---|---|---|---|
| Grade 1 | 99.5% Ti | α | 17 | Excellent ductility |
| Grade 2 | 99.2% Ti | α | 17 | Best general purpose |
| Ti-6Al-4V | Ti-6Al-4V | α+β | 7.2 | High strength-to-weight |
| Ti-6Al-2Sn-4Zr-2Mo | Complex | α+β | 8.1 | High temperature service |
Non-Metals
Polymers
Thermoplastics
| Material | Glass Transition (°C) | Melting Point (°C) | Thermal Conductivity (W/m·K) | Laser Cutting Notes |
|---|---|---|---|---|
| Acrylic (PMMA) | 105 | 160 | 0.19 | Excellent, flame-polished edges |
| Polycarbonate | 147 | 155 | 0.20 | Good, some discoloration |
| ABS | 105 | 200-260 | 0.25 | Moderate, toxic fumes |
| PEEK | 143 | 334 | 0.25 | Excellent, high-performance |
| Nylon 6 | 47 | 220 | 0.25 | Good, hygroscopic effects |
Thermosets
| Material | Decomposition (°C) | Thermal Conductivity (W/m·K) | Cutting Characteristics |
|---|---|---|---|
| Phenolic | 300-400 | 0.15 | Chars, toxic fumes |
| Epoxy | 250-350 | 0.17 | Good cutting, some charring |
| Polyimide | 500+ | 0.12 | Excellent high-temp performance |
Composites
Fiber-Reinforced Plastics
Heat Distribution in Composite Materials
| Matrix | Fiber | Fiber Volume (%) | Thermal Properties | Cutting Challenges |
|---|---|---|---|---|
| Epoxy | Carbon | 50-65 | Anisotropic | Delamination, fiber pullout |
| Epoxy | Glass | 45-60 | Low conductivity | Clean cutting possible |
| PEEK | Carbon | 30-50 | High temperature | Excellent cutting properties |
| Polyimide | Aramid | 40-55 | Low thermal | Fiber fraying |
Advanced Property Calculations
Thermal Diffusion Length
l_{th} = \sqrt{4\alpha t}
Where:
-
= thermal diffusion length
l_{th}(\unit{m}) -
= thermal diffusivity
\alpha(\unit{m^2/s}) -
= interaction time
t(\unit{s})
Absorption Coefficient Temperature Dependence
A(T) = A_0 \left[1 + \beta(T - T_0)\right]
Where:
-
= absorption at temperature T
A(T) -
= absorption at reference temperature
A_0 -
= temperature coefficient
\beta -
= reference temperature
T_0
Critical Power Density
I_{crit} = \frac{k(T_m - T_0)}{A \cdot \sqrt{\pi \alpha t}}
Where:
-
= critical power density
I_{crit}(\unit{W/cm^2}) -
= thermal conductivity
k -
= melting temperature
T_m -
= ambient temperature
T_0 -
= absorption coefficient
A
Material Selection Guidelines
For High-Speed Cutting
- Low thermal conductivity - Minimizes heat spreading
- High absorption - Efficient energy coupling
- Low melting point - Reduces energy requirements
- Good fluidity when molten - Clean melt removal
For High-Quality Edges
- Uniform composition - Consistent cutting behavior
- Fine grain structure - Smooth surface finish
- Low thermal expansion - Minimal distortion
- Stable phases - No phase transformations
For Thick Section Cutting
- Moderate thermal conductivity - Balanced heat distribution
- High oxidation resistance - For oxygen-assisted cutting
- Good mechanical properties - Structural integrity
- Low work hardening - Consistent cutting through thickness
Specialized Materials
Superalloys
| Alloy | Base | Service Temp (°C) | Thermal Conductivity (W/m·K) | Cutting Notes |
|---|---|---|---|---|
| Inconel 718 | Ni | 650 | 11.2 | Work hardening, slow speeds |
| Hastelloy X | Ni | 1200 | 9.1 | Excellent high-temp properties |
| Waspaloy | Ni | 815 | 10.5 | Precipitation hardening |
| René 41 | Ni | 980 | 12.8 | Turbine blade applications |
Refractory Metals
| Metal | Melting Point (°C) | Thermal Conductivity (W/m·K) | Density (g/cm³) | Applications |
|---|---|---|---|---|
| Tungsten | 3422 | 173 | 19.3 | Electronics, aerospace |
| Molybdenum | 2623 | 138 | 10.2 | High-temperature furnaces |
| Tantalum | 3017 | 57 | 16.7 | Chemical processing |
| Rhenium | 3186 | 48 | 21.0 | Jet engine components |
Quality Prediction Models
Surface Roughness Estimation
R_a = C_1 \left(\frac{v}{P}\right)^{0.3} t^{0.4} k^{0.2}
Heat-Affected Zone Width
HAZ = C_2 \sqrt{\frac{P \cdot k}{v \cdot \rho \cdot c_p}}
Cutting Speed Optimization
v_{opt} = \frac{C_3 \cdot P \cdot A}{t^{1.5} \cdot \sqrt{k \cdot \rho \cdot c_p}}
Related Topics
- Laser Physics - Understanding laser-material interaction
- Process Optimization - Parameter selection strategies
- Quality Control - Material-dependent quality factors
- Advanced Applications - Specialized material processing
This database is continuously updated with the latest material property data and cutting parameter research.